1,074 research outputs found

    Optical-Amplifier-Compatible Long-Distance Secure Key Generation Based on Random Phase Fluctuations for WDM Systems

    Get PDF
    We proposed and experimentally demonstrated a secure key generation and distribution system that is compatible with optical amplifiers and standard wavelength-division multiplexing (WDM) transmission systems. The key is generated from the phase fluctuations induced by environmental instabilities. The key generation system is tested in a 240 km bidirectional fiber-pair link with multiple optical amplifiers. To demonstrate the compatibility with WDM systems, 38 WDM channels are transmitted together with the key distribution channel. The secret key is protected against eavesdropping and coherence detection attack by the wide-band property of the signal carrier and the fast-changing rate of the phase fluctuations

    Coded Computing for Half-Duplex Wireless Distributed Computing Systems via Interference Alignment

    Full text link
    Distributed computing frameworks such as MapReduce and Spark are often used to process large-scale data computing jobs. In wireless scenarios, exchanging data among distributed nodes would seriously suffer from the communication bottleneck due to limited communication resources such as bandwidth and power. To address this problem, we propose a coded parallel computing (CPC) scheme for distributed computing systems where distributed nodes exchange information over a half-duplex wireless interference network. The CPC scheme achieves the multicast gain by utilizing coded computing to multicast coded symbols {intended to} multiple receiver nodes and the cooperative transmission gain by allowing multiple {transmitter} nodes to jointly deliver messages via interference alignment. To measure communication performance, we apply the widely used latency-oriented metric: \emph{normalized delivery time (NDT)}. It is shown that CPC can significantly reduce the NDT by jointly exploiting the parallel transmission and coded multicasting opportunities. Surprisingly, when KK tends to infinity and the computation load is fixed, CPC approaches zero NDT while all state-of-the-art schemes achieve positive values of NDT. Finally, we establish an information-theoretic lower bound for the NDT-computation load trade-off over \emph{half-duplex} network, and prove our scheme achieves the minimum NDT within a multiplicative gap of 33, i.e., our scheme is order optimal.Comment: 17 pages, 6 figure

    Single integrated device for optical CDMA code processing in dual-code environment

    Get PDF
    We report on the design, fabrication and performance of a matching integrated optical CDMA encoder-decoder pair based on holographic Bragg reflector technology. Simultaneous encoding/decoding operation of two multiple wavelength-hopping time-spreading codes was successfully demonstrated and shown to support two error-free OCDMA links at OC-24. A double-pass scheme was employed in the devices to enable the use of longer code length

    Anti-inflammatory effects of bitongling granules are mediated through the suppression of miR-21/p38 MAPK/TLR4/NF-κB signaling in H9C2 rat cardiac cells exposed to lipopolysaccharides

    Get PDF
    Purpose: To assess the protective effects of bitongling granules on H9C2 cells exposed to lipopolysaccharides (LPS) in the management of rheumatoid arthritis (RA)-induced myocardial inflammation.Methods: The effects of bitongling granule (BTLG) drug-containing serum were assessed in myocarditis models established in rat cardiac cells. MicroRNA-21 (miR-21) levels were evaluated by qRT-PCR while MTT assays were performed to assess cell viability. ELISA assay was used to evaluate tumor necrosis factor α (TNF-α), interleukin 17 (IL-17) and interleukin 6 (IL-6) levels in cell culture supernatants. Apoptosis was determined by flow cytometry (FCM). Quantitative mitogen-activated protein kinase (MAPK)/p38, toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB)/p65 levels were evaluated by western blot and immunofluorescenceResults: BTLG increased cardiac cell activity and exhibited anti-inflammatory effect. It also inhibited LPS-induced H9C2 apoptosis and suppressed p65 NF-κB phosphorylation (p-p65 NF-κB), TLR4, and p38 MAPK phosphorylation (p-p38 MAPK). BTLG also reduced miR-21 expression, and the overexpression of the miR-21 inhibitor in H9C2 suppressed apoptosis. Moreover, p-p38 MAPK, TLR4 and p-p65 NF-κB expression were down-regulated in miR-21 inhibitor transfected H9C2s. The inhibition of p38/TLR4/ NF-κB signaling might have occurred via the suppression of miR-21 by BTLG.Conclusion: The results show that BTLG inhibits the inflammatory reaction involved in p38MAPK/TLR4/ NF-κB signaling pathway and can prevent RA-induced cardiac disease, suggesting that BTLP treatment may be beneficial for the management of arthritic cardiomyopathy

    Surgical treatment strategy for multiple injury patients in ICU

    Get PDF
    AbstractObjectiveTo investigate the surgical treatment for patients with multiple injuries in ICU.MethodsClinical data of 163 multiple injury patients admitted to ICU of our hospital from January 2006 to January 2009 were retrospectively studied, including 118 males and 45 females, with the mean age of 36.2 years (range, 5-67 years). The injury regions included head and neck (29 cases), face (32 cases), chest (89 cases), abdomen (77 cases), pelvis and limbs (91 cases) and body surface (83 cases). There were 57 cases combined with shock. ISS values varied from 10 to 54, 18.42 on average. Patients received surgical treatments in ICU within respectively 24 hours (10 cases), 24-48 hours (8 cases), 3-7 days (7 cases) and 8-14 days (23 cases).ResultsFor the 163 patients, the duration of ICU stay ranged from 2 to 29 days, with the average value of 7.56 days. Among them, 143 were cured (87.73%), 11 died in the hospital (6.75%) due to severe hemorrhagic shock (6 cases), craniocerebral injury (3 cases) and multiple organ failure (2 cases), and 9 died after voluntarily discharging from hospital (5.52%). The total mortality rate was 12.27%.ConclusionsThe damage control principle should be followed when multiple injury patients are resuscitated in ICU. Surgical treatment strategies include actively controlling hemorrhage, treating the previously missed injuries and related wounds or surgical complications and performing planned staging operations

    Human acellular amniotic membrane implantation for lower third nasal reconstruction: a promising therapy to promote wound healing

    Get PDF
    BACKGROUND: The lower third of the nose is one of the most important cosmetic units of the face, and its reconstructive techniques remain a big challenge. As an alternative approach to repair or regenerate the nasal tissue, the biomaterial-based strategy has been extensively investigated. The aim of this study is to determine the safety and efficacy of human acellular amniotic membrane (HAAM) to repair the full-thickness defects in the lower third of the nose in humans. METHODS: In this study, 180 patients who underwent excision of skin lesions of the lower third of the nose from 2012 to 2016 were included; of the patients, 92 received HAAM and Vaseline gauze treatments, and the other 88 patients received Vaseline gauze treatment only. The haemostasis time and the duration of operation were recorded during surgery; after surgery, the time to pain disappearance, scab formation and wound healing, and the wound healing rate were measured. RESULTS: Immediately after the HAAM implantation, a reduction of the haemostasis time and an accelerated disappearance of pain were observed. Compared with the control group, the formation and detachment of scab in patients who received the HAAM implantation were notably accelerated, postoperatively. When the diameter of the lesion exceeded 5\u2009mm, the HAAM implantation was found to enhance the wound healing, although this enhancement was not seen when the diameter was less than 5\u2009mm. Additionally, the HAAM implantation significantly reduced bleeding, wound infection and scar formation, postoperatively. CONCLUSIONS: HAAM-assisted healing is a promising therapy for lower third nasal reconstruction leading to rapid wound healing and fewer complications and thus has considerable potential for extensive clinical application in repairing skin wounds. TRIAL REGISTRATION: ChiCTR1800017618, retrospectively registered on July 08, 2018

    Targeting translation initiation by synthetic rocaglates for treating MYC-driven lymphomas.

    Full text link
    MYC-driven lymphomas, especially those with concurrent MYC and BCL2 dysregulation, are currently a challenge in clinical practice due to rapid disease progression, resistance to standard chemotherapy, and high risk of refractory disease. MYC plays a central role by coordinating hyperactive protein synthesis with upregulated transcription in order to support rapid proliferation of tumor cells. Translation initiation inhibitor rocaglates have been identified as the most potent drugs in MYC-driven lymphomas as they efficiently inhibit MYC expression and tumor cell viability. We found that this class of compounds can overcome eIF4A abundance by stabilizing target mRNA-eIF4A interaction that directly prevents translation. Proteome-wide quantification demonstrated selective repression of multiple critical oncoproteins in addition to MYC in B-cell lymphoma including NEK2, MCL1, AURKA, PLK1, and several transcription factors that are generally considered undruggable. Finally, (-)-SDS-1-021, the most promising synthetic rocaglate, was confirmed to be highly potent as a single agent, and displayed significant synergy with the BCL2 inhibitor ABT199 in inhibiting tumor growth and survival in primary lymphoma cells in vitro and in patient-derived xenograft mouse models. Overall, our findings support the strategy of using rocaglates to target oncoprotein synthesis in MYC-driven lymphomas.P30 CA036727 - NCI NIH HHS; R24 GM111625 - NIGMS NIH HHS; R35 GM118173 - NIGMS NIH HHS; LB506 - Nebraska Department of Health and Human Services (Nebraska DHHS)Accepted manuscriptSupporting documentatio

    Modeling Transceiver BER-OSNR Characteristic for QoT Estimation in Short-Reach Systems

    Get PDF
    A transceiver BER-OSNR model is validated and applied the Q-factor estimation for short-reach systems. Experiments using pluggable transceivers with commercial DSPs show that the modeling and estimation errors are less than 0.05 dB and 0.15 dB, respectively
    • …
    corecore